Finite Element Method for Eigenvalue Problems in Electromagnetics

many complex problems in electromagnetics. The goal of the current … plied to electromagnetic problems, it was primarily long-….

More PDF Content

Finite Element Method for Eigenvalue Problems in Electromagnetics
Table of Contents

  • Symbols . . . vii
  • Abstract . . . 1
  • 1. Introduction . . . 1
  • 2. Two-DimensionalProblems . . . 2
  • 2.1. Homogeneous Waveguides|ScalarFormulation . . . 2
  • 2.1.1. Formulation. . . 2
  • 2.1.2. Discretization . . . 2
  • 2.1.3. Field ComputationFrom Scalar Potential . . . 4
  • 2.1.4. Numerical Examples . . . 4
  • 2.1.5. Summary . . . 8
  • 2.2. InhomogeneousWaveguides|VectorFormulation . . . 8
  • 2.2.1. Solution of Homogeneous Waveguide Problem With Two-Component
  • Transverse VectorFields . . . 10
  • 2.2.1.1. Formulation. . . 10
  • 2.2.1.2. Discretization . . . 10
  • 2.2.1.3. Finite element formulation . . . 11
  • 2.2.1.4. Finite element matrices. . . 12
  • 2.2.1.5. Numerical examples . . . 12
  • 2.2.2. Inhomogeneous Waveguide Problems Using Three-Component Vector Fields . . . 12
  • 2.2.2.1. Formulation. . . 13
  • 2.2.2.2. Discretization . . . 13
  • 2.2.2.3. Finite element formulation . . . 13
  • 2.2.2.4. Finite element matrices. . . 14
  • 2.2.2.5. Numerical examples . . . 14
  • 2.2.3. Wave-Number Determination for Given Propagation Constant . . . 15
  • 2.2.3.1. Formulation. . . 15
  • 2.2.3.2. Discretization . . . 16
  • 2.2.3.3. Finite element formulation . . . 16
  • 2.2.3.4. Finite element matrices. . . 17
  • 2.2.3.5. Numerical example. . . 17
  • 2.2.4. Dispersion Characteristics of Waveguides . . . 17
  • 2.2.4.1. Formulation. . . 17
  • 2.2.4.2. Discretization . . . 17
  • 2.2.4.3. Finite element formulation . . . 18
  • 2.2.4.4. Finite element matrices. . . 18
  • 2.2.4.5. Numerical examples . . . 19
  • 2.2.5. Summary . . . 19
  • 3. Three-Dimensional Problems . . . 19
  • 3.1. Eigenvalues of Three-Dimensional Cavity|Vector Formulation . . . 19
  • 3.1.1. Formulation. . . 20
  • 3.1.2. Discretization . . . 21
  • 3.1.3. Finite Element Formulation . . . 22
  • 3.1.4. Finite ElementMatrices . . . 22
  • 3.1.5. NumericalExamples . . . 23
  • 3.1.6. Summary . . . 24
  • 4. ConcludingRemarks . . . 24
  • Appendix . . . 26
  • References . . . 27
  • Tables
  • Table1.Cuto WaveNumbersforRectangularWaveguide . . . 5
  • Table 2. Cuto Wave Numbers for Circular Waveguide . . . 5
  • Table 3. Cuto Wave Numbers for Coaxial Line With r2=r1 = 4 . . . 8
  • Table 4. Cuto Wave Numbers for Rectangular Waveguide . . . 12
  • Table 5. Cuto Wave Numbers for Circular Waveguide . . . 13
  • Table 6. Cuto Wave Numbers for Rectangular Waveguide . . . 14
  • Table 7. Cuto Wave Numbers for Circular Waveguide . . . 14
  • Table 8. Wave Numbers for LSM Modes of Square Waveguide With =10 . . . 17
  • Table 9. Dispersion Characteristics of Partially Filled Rectangular WaveguideofFigure12 . . . 19
  • Table 10. Dispersion Characteristics of Partially Filled Rectangular WaveguideofFigure13 . . . 20
  • Table 11. Formation of Edges of Tetrahedral Element . . . 21
  • Table 12. Eigenvalues of Air-Filled Rectangular Cavity . . . 23
  • Table 13. Eigenvalues of Half-Filled Rectangular Cavity . . . 24
  • Table 14. Eigenvalues of Air-Filled Circular Cylindrical Cavity . . . 24
  • Table 15. Eigenvalues of Spherical Cavity With Radius of 1 cm . . . 24
  • Figures
  • Figure 1.Geometryofproblem. . . 2
  • Figure 2.Singletriangularelement. . . 2
  • Figure 3.FlowchartforFEMsolution. . . 4
  • Figure 4.Geometry ofrectangular waveguide. . . 5
  • Figure 5. Electric eld distribution of some modes for rectangular waveguide. . . 6
  • Figure 6.Crosssection ofcircular waveguide. . . 6
  • Figure 7. Electric eld distribution of some modes for circular waveguide. . . 7
  • Figure 8.Crosssectionofcoaxialline. . . 8
  • Figure 9. Electric eld distribution of some modes for coaxial line. . . 9
  • Figure 10. Con guration of tangential edge elements. . . 11
  • Figure 11.Partially lledsquarewaveguide. . . 17
  • Figure 12. Partially lled rectangular waveguide with br=ar = 0:45, d=br = 0:5,and \
Download Finite Element Method for Eigenvalue Problems in Electromagnetics pdf from ecee.colorado.edu, 38 pages, 1530.75KB.
Related Books

2 Responses to “Finite Element Method for Eigenvalue Problems in Electromagnetics”

  1. 20180306 xiaoou nike shoes canada goose outlet store tory burch sandals mbt outlet moncler outlet online longchamp bags nfl jerseys canada goose outlet cheap football shirts coach handbags outlet michael kors outlet online oakley sunglasses wholesale canada goose jackets outlet coach outlet online polo ralph lauren coach outlet pandora jewelry canada goose outlet pandora jewelry cazal outlet pandora charms outlet cheap jordan shoes pandora outlet nfl jerseys wholesale canada goose canada goose jackets polo ralph lauren coach outlet mulberry sale coach outlet adidas wings michael kors outlet polo outlet cheap nfl jerseys mac cosmetics adidas nmd runner michael kors uk oakley sunglasses michael kors ralph lauren shirts canada goose jackets coach outlet online mcm outlet ferragamo outlet canada goose coats canada goose ugg boots on sale ugg boots ray ban sunglasses outlet oakley sunglasses wholesale nike roshe one reebok shoes ralph lauren uk canada goose jackets michael kors handbags outlet tory burch outlet online coach outlet christian louboutin outlet moncler outlet ugg outlet online uggs outlet uggs outlet nba jerseys true religion outlet uk cheap oakley sunglasses air max uk lacoste outlet tory burch outlet air max 90 pandora charms oakley sunglasses longchamp pliage hornets jerseys ralph lauren factory store canada goose outlet store coach outlet store online coach outlet online burberry outlet stores cheap ugg boots polo ralph lauren

Leave a Reply